Cayley-Dixon projection operator for multi-univariate composed polynomials
نویسندگان
چکیده
The Cayley-Dixon formulation for multivariate projection operators (multiples of resultants of multivariate polynomials) has been shown to be efficient (both experimentally and theoretically) for simultaneously eliminating many variables from a polynomial system. In this paper, the behavior of the Cayley-Dixon projection operator and the structure of Dixon matrices are analyzed for composed polynomial systems constructed from a multivariate system in which each variable is substituted by a univariate polynomial in a distinct variable. Under some conditions, it is shown that a Dixon projection operator of the composed system can be expressed as a power of the resultant of the outer polynomial system multiplied by powers of the leading coefficients of the univariate polynomials substituted for variables in the outer system. A new resultant formula is derived for systems where it is known that the Cayley-Dixon construction does not contain any extraneous factor. The complexity of constructing Dixon matrices and roots at toric infinity of composed polynomials are analyzed.
منابع مشابه
Cayley-Dixon construction of Resultants of Multi-Univariate Composed Polynomials
The Cayley-Dixon formulation for multivariate resultants have been shown to be efficient (both experimentally and theoretically) for computing resultants by simultaneously eliminating many variables from a polynomial system. In this paper, the behavior of Cayley-Dixon resultant construction and the structure of Dixon matrices is analyzed for composed polynomial systems constructed from a multiv...
متن کاملCayley-Dixon Resultant Matrices of Multi-univariate Composed Polynomials
The behavior of the Cayley-Dixon resultant construction and the structure of Dixon matrices are analyzed for composed polynomial systems constructed from a multivariate system in which each variable is substituted by a univariate polynomial in a distinct variable. It is shown that a Dixon projection operator (a multiple of the resultant) of the composed system can be expressed as a power of the...
متن کاملFast Computation of the Bezout and Dixon Resultant Matrices
Efficient algorithms are derived for computing the entries of the Bezout resultant matrix for two univariate polynomials of degree n and for calculating the entries of the Dixon–Cayley resultant matrix for three bivariate polynomials of bidegree (m, n). Standard methods based on explicit formulas require O(n3) additions and multiplications to compute all the entries of the Bezout resultant matr...
متن کاملAcm Symposium on Theory of Computing (stoc 96) Sparsity Considerations in Dixon Resultants
New results relating the sparsity of nonhomogeneous polynomial systems and computation of their projection operator (a non-trivial multiple of the multivariate resultant) using Dixon's method are developed. It is demonstrated that Dixon's method of computing resultants, despite being classical, implicitly exploits the sparse structure of input polynomials. It is proved that the size of the Dixo...
متن کاملFinite-Rank Multivariate-Basis Expansions of the Resolvent Operator as a Means of Solving the Multivariable Lippmann–Schwinger Equation for Two-Particle Scattering
Finite-rank expansions of the two-body resolvent operator are explored as a tool for calculating the full three-dimensional two-body T -matrix without invoking the partial-wave decomposition. The separable expansions of the full resolvent that follow from finite-rank approximations of the free resolvent are employed in the Low equation to calculate the T-matrix elements. The finite-rank expansi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 44 شماره
صفحات -
تاریخ انتشار 2009